.

STABLE ACYLS AND IMINOACYLS OF ZIRCONIUM(IV), $[Zr(\eta-C_5H_5)_2\{C(:X)R\}R']$ [X = O OR NTol-*p*; R = Me₃CCH₂, Me₃SiCH₂, OR (Me₃Si)₂CH; R' = Cl OR ALKYL]

M.F. LAPPERT, N.T. LUONG-THI and C.R.C. MILNE School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received May 4th, 1979)

Summary

Insertion of CO or *p*-ToINC into a Zr—C bond of $[Zr(\eta-C_5H_5)_2(R)R']$ under ambient conditions in C₆H₆ leads to the stable η^2 -acyl- or η^2 -iminoacyl-complex $[Zr(\eta-C_5H_5)_2\{\eta^2-C(X)R\}R']$ (X = O or NTol-*p*); with $[Zr(\eta-C_5H_5)_2\{CH(SiMe_3)_2\}Me]$ as substrate there is exclusive preference for scission of the more hindered Zr—C bond.

We report the preparation and spectroscopic characterisation of some new acyls and iminoacyls of Zr^{IV} (I), obtained by the insertion reaction of eq. 1 under ambient conditions in benzene.

 $\begin{bmatrix} Zr(\eta - C_5 H_5)_2(R)R' \end{bmatrix} + CX \xrightarrow{X = O \text{ or } NTol-p} \begin{bmatrix} Zr(\eta - C_5 H_5)_2\{C(:X)R\}R' \end{bmatrix}$ (1) (II) (I)

TABLE 1

SELECTED DATA FOR THE NEW ACYL AND IMINOACYL COMPOUNDS $[Zr(\eta-C_5H)_2 \{\eta^2-C(X)R\}R']^a$				
x	R	R'	$v(C=X) (cm^{-1})^{b}$	¹³ C NMR: δ(C=X) ^C (ppm)
0	CH ₂ CMe ₃	Cl	1550	318.7
0	CH2SiMe3	Cl	1515	317.2
0	CH ₂ CMe ₃	CH2CMe3	1560	322.9
0	CH ₂ SiMe ₃	CH ₂ SiMe ₃	1505	
\mathbf{o}^d	CH(SiMe3),	Me	1470	
NTol-p	CH (SiMe3)	Cl	1540, 1520	238, 233.2
NTol-p ^e	CH(SiMe ₃),	Me	1530	241.6, 237.9
NTol-p	CH ₂ SiMe ₃	CH2SiMe3	1578	242.4
NTol-p	CH ₂ CMe ₃	CH ₂ CMe ₃	1578	245.8

^a These are white-to-pale yellow, crystalline compounds having sharp m.p.'s and analysing satisfactorily; only representative compounds and spectroscopic data are cited. ^b Nujol mull. ^c In CDCl₃ solution. ^{d i} H

NMR: 5.63 (η -C₅H₅), 3.78 ($\overset{0}{L}$ -CH), 0.57 (Zr-CH₃), 0.20 (SiMe₃). $\overset{e_1}{}$ H NMR: 6.5-7.3 (C₆H₄), 5.77 (η -C₅H₅), 2.95 [CHC(:NTol-*p*)], 2.45 (CH₃Tol-*p*), 0.23 (SiMe₃), -0.07 (Zr-CH₃).

The results are summarised in Table 1. The following features are of interest. (i) Several simple neutral iminoacyls of Zr^{IV} are reported.* (ii) The use of an unsymmetrical dialkylzirconium(IV) substrate, (II) [R = $(Me_3Si)_2CH$, R' = Me], provides for the first time an opportunity to examine competitive insertion, and exclusive preference with both CO or *p*-TolNC is for scission of the more hindered (also the weaker [1]) Zr-C bond in I. (iii) The title acyls I (X = O) are stable crystalline solids which do not dissociate into their factors (reverse of eq. 1) in solution at 25°C, in contrast to their labile methyl or benzyl analogues I (R = Me or PhCH₂, X = O) [2]. (iv) Spectroscopic data point to an η^2 -, (III), rather than η^1 -, (IV), mode of attachment of the acyl or iminoacyl ligand, as has previously been unequivocally demonstrated (including X-ray) for [$Zr(\eta-C_5H_5)_2(COMe)Me$] [2]. As for (iv), the low $\nu(CX)$ IR absorption for com-

(Ш)

(立)

pounds I (see Table 1) provides good evidence for structure (III) for the acyl complexes, cf., 1540 cm⁻¹ when X = O and R = Me = R' [2]. However, it is less clear cut for the nitrogen analogues, cf., 1680-1700 cm⁻¹ in $[Mo(\eta-C_5H_5)_2 \{\eta^2 - C(NPh)Me\}CO]$ [3]. The low ¹³C NMR chemical shifts for both types, however, support the sideways-on ligating mode, cf., $\delta(^{13}C)$ for the above Mo^{II} complex at ca. 195 ppm downfield from SiMe₄ [3].

One of the iminoacyl complexes I (X = NTol-p, R = (Me₃Si)₂CH, and R' = Cl) shows NMR characteristics at ambient temperature indicative of two isomers and also has two ν (NC) IR bands. Thus in the ¹³C NMR experiment at 25°C each carbon signal is a 1/1 doublet in CDCl₃, but a 3/1 doublet in C₆D₆ in which solvent coalescence occurs at 65°C. We attribute this to the rota-

(<u>又</u>) (X = CI)

C36

^{*}Compounds containing the group $Zr^{IV}\{C(:NR)C(Ph):CMe_2\}$ have been obtained by RNC insertion into a Zr^{IV} -alkenyl bond [5].

tion described in V, which is sufficiently slow to be observed on the NMR time scale only when R is the bulky $(Me_3Si)_2$ CH group. This spectroscopic observation cannot be explained in terms of η^1 -attachment of the iminoacyl ligand [3].

A rapid reaction is also observed when either CO or *p*-TolNC is allowed to react with the dimeric hydridoalkyl II ($R = (Me_3Si)_2CH, R' = H$) [1] under ambient conditions; it is likely that competitive pathways are operative [4]. Experiments are in progress to resolve this issue, as well as on (i) an X-ray diffraction study of an iminoacyl (I) and (ii) variable temperature ¹³C NMR.

Acknowledgement

We thank C.N.R.S. for granting leave of absence to N.T.L-T. from her post in Paris, and S.R.C. for support.

References

- 1 J. Jeffery, M.F. Lappert, N.T. Luong-Thi, J.L. Atwood and W.E. Hunter, J. Chem. Soc. Chem. Commun., (1978) 1081.
- 2 G. Fachinetti, G. Fochi and C. Floriani, J. Chem. Soc. Dalton, (1977) 1946.
- 3 R.D. Adams and D.F. Chodosh, Inorg. Chem., 17 (1978) 41.
- 4 K.I. Gell and J. Schwartz, J. Organometal. Chem., 162 (1978) C11,

. .

5 C.J. Cardin, D.J. Cardin, J.M. Kelly, R.J. Norton and A. Ray, J. Organometal. Chem., 132 (1977) C23.